Note

THERMOGRAVIMETRIC INVESTIGATION OF 4-PICOLINE-*N*-OXIDE (4-picNO) LANTHANOID TRIFLUOROMETHANESULFONATE COMPLEXES

G. VICENTINI and L.B. ZINNER

Instituto de Química, Universidade de São Paulo, C.P. 20.780, CEP 01498, Saõ Paulo SP (Brazil)

P.O. DUNSTAN

Instituto de Química, Universidade Estadual de Campinas, C.P. 6.154, CEP 13.100, Campinas SP (Brazil)

(Received 15 October 1986)

Complexes with composition $Ln(CF_3SO_3)_3 \cdot n(4\text{-picNO})$ (n = 8 for Ln = La-Gd, except Ce, and n = 7 for Ln = Tb-Lu, Y) have been recently reported [1]. In this note the thermogravimetric behaviour of such complexes are described.

EXPERIMENTAL

The adducts were prepared by reaction of an ethanolic solution of the hydrated lanthanoid trifluoromethanesulfonate with 4-picNO, followed by addition of triethylorthoformate. The precipitates were filtered, washed with teof and dried in vacuo over anhydrous chloride. Thermogravimetric studies were made in a nitrogen atmosphere with a Perkin–Elmer TGS-1 system, using samples of about 1 mg and a heating rate of 10 K min⁻¹.

RESULTS AND DISCUSSION

The compounds prepared present the formula $[Ln(4-picNO)_n](CF_3SO_3)_3$ (n = 8 for Ln = La-Gd, except Ce and n = 7 for Ln = Tb-Lu, Y). The IR spectra show bands attributed to ionic trifluoromethanesulfonates. Shifts of ν NO to lower and δ NO to higher frequencies, in relation to the free ligand, due to coordination through the oxygen were observed.

Conductance data in acetonitrile and nitromethane show lower, but still close, values to 1:3 electrolytes.

TABLE 1

Ln	Residue	Temperature range (K)	Weight loss or residue (%)		Decomposition process	Apparent melting
			Theor.	Exp.	•	range (K)
La		455-595	52.36	51.2	1	386-389
		595-710	25.30	26.5		
		710-810	8.91	8.3		
	LaF ₃	810-1070	13.43	14.1		
Pr		440-600	44.82	44.8	2	398-401
		600-710	32.73	32.3		
		710-795	8.91	6.6		
	PrF ₃	795-1070	13.54	13.2		
Nd		435-615	52.15	49.6	1	403-406
		615-710	25.21	28.8		
		710-800	8.90	8.3		
	NdF ₃	800-1070	13.74	13.3		
Sm		435-565	44.52	42.7	2	402-406
		565-720	32.52	41.3	-	
		720-780	8.86	3.7		
	SmF ₃	780-1070	14.10	14.3		
Eu		435-695	51.87	53.6	1	402-405
		695-790	25.10	24.8		
		790-880	8.84	8.5		
	EuF_3	880-1070	14.19	13.1		
Gd		400-585	44.35	43.8	2	395-399
		585-720	32.44	34.2		
		720-795	8.71	7.9		
	GdF₃	795-1070	14.50	14.1		
Tb		465-550	31.88	31.3	3	434–438
		550-630	23.91	24.9		
		630-720	18.97	16.7		
		720-795	9.49	8.5		
	TbF ₃	795-1070	15.61	15.5		
Dy		445-545	31.76	31.9	3	438-442
		545-650	23.82	23.8		
		650-715	18.93	19.4		
		715-795	9.47	5.9		
	DyF ₃	795-1070	15.98	17.1		
Но		460-545	31.72	28.3	3	439-443
		545-645	23.78	25.6		
		645-715	18.90	21.2		
		715-795	9.46	7.4		
	HoF ₃	795-1070	16.13	16.2		

Summary of TG data and apparent melting ranges

Ln	Residue	Temperature range (K)	Weight loss or residue (%)		Decomposition process	Apparent melting
			Theor.	Exp.		range (K)
Er		455-535	31.68	29.4	4	443-447
		535-655	33.19	35.0		
		655-715	18.86	20.2		
	ErF ₃	715–1070	16.27	15.5		
Tm		470–545	31.61	29.1	3	443-447
		545-645	23.73	23.7		
		645-715	18.84	20.4		
		715-820	9.48	9.3		
	TmF ₃	820-1070	16.37	16.7		
Yb		450-530	31.54	26.9	5	446-450
		530-625	7.88	11.6		
		625-745	34.56	31.2		
		745-840	9.40	11.6		
	YbF ₃	840-1010	16.62	16.9		
Lu		435-525	31.48	29.4	5	447-451
		525-605	7.87	8.2		
		605-725	34.51	38.8		
		725-850	9.38	7.1		
	LuF3	850-1070	16.74	16.5		
Y		465-545	33.56	30.6	4	439-443
		545-675	35.19	33.0		
		675-710	20.00	21.6		
	YF ₃	710–1070	11.22	11.1		

TABLE 1 (continued)

X-ray powder patterns indicate the existence of two isomorphous series, corresponding to the compounds with eight and seven ligands.

When the complexes are heated, under a nitrogen atmosphere, melting occurs before decomposition. The melting range (Table 1) is 386-389 K for the lanthanum compound and some 60 K higher for the lutetium complex (447-451 K).

An analysis of the TG data (Table 1 and Fig. 1) reveals that, under the experimental conditions used, five different decomposition schemes exist, depending on the rare-earth ion. The data indicate that the compounds decompose with evolution of 4-picNO, followed by SO_2 and COF_2 [2], according to the equations:

 $Ln(CF_{3}SO_{3})_{3} \cdot 8(4\text{-picNO}) \rightarrow Ln(CF_{3}SO_{3})_{3} \cdot (4\text{-picNO}) + 7(4\text{-picNO})$ $Ln(CF_{3}SO_{3})_{3} \cdot (4\text{-picNO}) \rightarrow LnF_{2}(CF_{3}SO_{3}) + 4\text{-picNO} + 2COF_{2} + 2SO_{2}$ $LnF_{2}(CF_{3}SO_{3}) \rightarrow LnF_{3} + COF_{2} + SO_{2}$ (1)

Fig. 1. Thermogravimetric curves for some representative complexes in a nitrogen atmosphere.

$$Ln(CF_{3}SO_{3})_{3} \cdot 8(4\text{-picNO}) \rightarrow Ln(CF_{3}SO_{3})_{3} \cdot 2(4\text{-picNO}) + 6(4\text{-picNO})$$

$$Ln(CF_{3}SO_{3})_{3} \cdot 2(4\text{-picNO}) \rightarrow LnF_{2}(CF_{3}SO_{3}) + 2(4\text{-picNO}) + 2COF_{2} + 2SO_{2}$$

$$LnF_{2}(CF_{3}SO_{3}) \rightarrow LnF_{3} + COF_{2} + SO_{2}$$
(2)

$$Ln(CF_{3}SO_{3})_{3} \cdot 7(4\text{-picNO}) \rightarrow Ln(CF_{3}SO_{3})_{3} \cdot 3(4\text{-picNO}) + 4(4\text{-picNO})$$

$$Ln(CF_{3}SO_{3})_{3} \cdot 3(4\text{-picNO}) \rightarrow Ln(CF_{3}SO_{3})_{3} + 3(4\text{-picNO})$$

$$Ln(CF_{3}SO_{3})_{3} \rightarrow LnF_{2}(CF_{3}SO_{3}) + 2COF_{2} + 2SO_{2}$$

$$LnF_{2}(CF_{3}SO_{3}) \rightarrow LnF_{3} + COF_{2} + SO_{2}$$
(3)

 $Ln(CF_{3}SO_{3})_{3} \cdot 7(4\text{-picNO}) \rightarrow Ln(CF_{3}SO_{3})_{3} \cdot 3(4\text{-picNO}) + 4(4\text{-picNO})$ $Ln(CF_{3}SO_{3})_{3} \cdot 3(4\text{-picNO}) \rightarrow LnF(CF_{3}SO_{3})_{2} + 3(4\text{-picNO}) + COF_{2} + SO_{2}$ $LnF(CF_{3}SO_{3})_{2} \rightarrow LnF_{3} + 2COF_{2} + 2SO_{2}$ (4)

$$Ln(CF_{3}SO_{3})_{3} \cdot 7(4\text{-picNO}) \rightarrow Ln(CF_{3}SO_{3})_{3} \cdot 3(4\text{-picNO}) + 4(4\text{-picNO})$$

$$Ln(CF_{3}SO_{3})_{3} \cdot 3(4\text{-picNO}) \rightarrow Ln(CF_{3}SO_{3})_{3} \cdot 2(4\text{-picNO}) + 4\text{-picNO}$$

$$Ln(CF_{3}SO_{3})_{3} \cdot 2(4\text{-picNO}) \rightarrow LnF_{2}(CF_{3}SO_{3}) + 2COF_{2} + 2SO_{2}$$

$$LnF_{2}(CF_{3}SO_{3}) \rightarrow LnF_{3} + COF_{2} + SO_{2}$$
(5)

All decompositions yield the respective lanthanoid fluoride as final solid residues, indicating that a complete rearrangement of bonds takes place. LnF_3 residues were also obtained in the decomposition of hydrated lanthanide trifluoromethanesulfonate [2] and in the complexes with thioxane-oxide [3], dimethylsulfoxide [4] and *trans*-1,4-dithiane-1,4-dioxide [5].

ACKNOWLEDGEMENTS

The authors wish to thank the following for financial support: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

REFERENCES

- 1 C.A. Fantin, L.B. Zinner, G. Vicentini, C. Rodellas and L. Niinistö, Acta Chem. Scand., Ser. A, in press.
- 2 J.E. Roberts and J.S. Bykowski, Thermochim. Acta, 25 (1978) 233.
- 3 G. Vicentini, L.B. Zinner, A.O. Silva and P.O. Dunstan, Lanthanide Actinide Res., 1 (1985) 143.
- 4 L.B. Zinner, G. Vicentini and P.O. Dunstan, J. Less-common Met., 112 (1985) 393.
- 5 P.O. Dunstan, L.B. Zinner and G. Vicentini, Thermochim. Acta, in press.